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HW one, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Let (S.*) be a group. Fix «.b € S. Show thatif « = b = a » cforsomec € S, thend = . Also
showthatif b+ e = c+a, then b = .

(ii) Let (S, +) be a group. Fix a,b € S. Show that the equation a » .+ = ¥ has unique solution and find r. Note the
z % g = b has also unique solution, but only show it for a » 1 = #.

(iii) Let (S, ) be a group and assume fal = 12 for some « € 5. For what values of m (I = wi < 12) do we have
la™| = 12? For what values of m (| < i < 12) do we have [o™] = 37

(iv) Let (5, ») be a group and assume |a| = 6 for some a € §. Let £ = {e.a,u?, ... a®}. Construct the Caley’s table of
(£, *). By staring at the table you should observe that £ is a group and hence a subgroup of 5.

(v) Convince me that if 7 is not prime, then (2, X, ) is never a group.
(vi) Convince me that if » is prime, then (Z:, .\',__) is a group.[hint: recall Fermat little Theorem, if pisprime and ptm
(meaning p is not a factor of m), then P~ V{madp) = 1.

(vii) Let F = {3,6,9,12}, and » = multiplication module 15, Convince me that (£ +) is a group by constructing the
Caley’s table. What is ¢ in /°? Find the inverse of each element of F. INTERESTING!!!

(viii) Consider (Ds,0). We know that Ds has 10 elements. Let 51 be one of the reflections (we know that Ds has 5
reflections). Let « = R72. Convince me that {aospa*os.e’ospat sy, a’o 51} = the set of all reflections in
Ds[Hint: may be you need to use (i))

Submit your solution on Tuesday September 20, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics & Swalistics. American Universii ¥ of Sharjah. PO. Box 26666, Sharjah, United Arab Emirates,
E-mail: abadavi®aus.edu, www.ayman-badavi.com ;
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HW TWO, MTH 320, Fall 2016

Ayman Badawi

‘QUESTION 1. baf)/(}iven (S,*) =< a > forsome a € Sand S has exactly 24 elements. Let F = {be 5| S =< b >}.
Write the elements of F in terms of a. How many elements does F have?.

,jH(Let S = {la,b) | @ € Z;,b € Z3}. Define * on S such that if(z,za), (y1,y2) € S, then (z1,22) * (y1, 1) =
(z1y1{mod3), x4 + zay1(mod3)). Then (S, =) satisfies the associative property (do not prove this), Construct the
Caley’s table of (5, ). By staring at the table: Is S a group? if yes, what is ¢? what is the inverse of each element?
Is S cyclic? If yes, finda € S such that § =< a >,

gn‘)/ Let D be a group with 47 elements, Prove that D is abelian? Can you say more?

M Let D be a group, H}, H, be two subgroups of D such that ##; € H and I/, g Hy. Prove that f; U H, is never a
subgroup of D.

M Let D be a group, and I, fI» be two subgroups of D. Prove that f7; 1 /1 is a subgroup of D.

Let (S, #) be a an abelian group with identity e. Fix an integer n > 2, and let F = {a € § | a™ = e}. Prove that
(F, %) is a subgroup of S. Assume n = 11. Prove that either F = {e} or F has at least 11 elements.

i}i?{Construct the Caley’s table for (U(9), .¢). Is U(9) is cyclic? If yes, then find a € U(9) such that (U(9), o) =< a .

Submit your solution on Tuesday October 4, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawiQaus.edu, www.ayman-badawi.com
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HW III, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that 6.7, 87 are infinite cyclic subgroups of (Z,+). Hence 6Z N 87 is also an infinite
cyclic subgroup and thus 6Z N 8Z = aZ for some a € Z. Find all possible values of a. Explain?

Sketch. Let a be the least positive integer that "lives' in 6Z and "lives" in 8Z. Hence 6|a and 8|a. Since a
is the least positive integer where 6|a and 8|a, we conclude that « = LCM[6,8] = 24. Thus a = 24. Thus
6ZN8Z =247

(ii) In general fix a,b € (Z,+). Then aZ NbZ = cZ for some ¢ € Z. Find all possible values ¢ (of course write ¢ in
terms of a, b.

Sketch: Let d € (aZNbZ). Thena | dand b | d. Let h = lcm/[a, b]. Then h is the least positive integer that lives
in aZNbZ. Since aZNbZ must be an infinite cyclic subgroup of Z, we conclude that a ZNbZ = Icm|a,b]Z = hZ.
We know that if # =< v > is an infinite cyclic group, then I has exactly two generators, namely: v and v—!.
Thus aZ NbZ = lem|a,b]Z = —lem]a, b Z. Thus all possible values of ¢ are : lem[a,b] and -lem[a, b]. .

(iii) Let (S, *) be a group. Assume that a * b = b % a for some a,b € S. Prove that a * b~ = b~! x a.

1 1

Proof Since ¢ b = bxa, wehave b ! xaxbxa ' =b lxbxaxa ! =exe=c.Sinceb ' xaxbxa~

conclude that b ! xa =exaxb 1 =axbl.

= & wWe

(iv) Let (D, ) be a group with 8 elements. Assume that D has a unique subgroup of order 2 and it has a unique abelian
subgroup of order 4. Prove that D is an abelian group. In fact, you can prove that (D, %) is cyclic.

Proof: Let F' be the unique abelian subgroup of D with 2 elements and let M/ be the unique abelian subgroup
of D with 4 elements. Since ) is abelian with 4 elements, we know that A/ has an abelian subgroup K
with 2 elements. Since K is also an abelian subgroup of D with 2 elements, we conclude that k' = F.
Now let « € D\ M and let ¢ = |a|. Hence by Lagrange Theorem, ¢ = 1 or 2 or 4 or 8. We know that
{a,a?,...,a° = e} =< a > is an abelian (cyclic) subgroup of D with c elements. Since € D\ M and F ¢ M
are unique abelian subgroups of order 2 and 4 respectively, we conclude that ¢ = 2 and ¢ # 4. Clearly, ¢ # 1.
Hencec=8. Thus D =< a >. ,

(v) Let (D, %) be a group. Assume a * b = b x a for some a,b € D. Given |a| = n, |b| = m, and gcd(n, m) = 1. Prove

that |a * b| = nm. [Hint: Since ged(n, m) = 1, from class notes we know that if n | mc for some ¢ € Z, then n | c.
Also you need to use a trivial fact from number theory that if gcd(n,m) = 1 and n | c and m | ¢ for some ¢ € Z,
then nm | c]
Proof: Let k = |a * b|. Since a xb = b*a, (a x )" = (a™)™(b™)" = e*x e = e. Hence klnm. Now
e = (a*b)*™ = a* % (b™)F = a*™ x e = a*™. Thus n | km. Since gcd(n,m) = 1, we conclude that n | k.
Similarly, e = (a * b)*™ = (a™)* x b*" = e x b = bv*". Thus m | kn. Since gcd(n,m) = 1, we conclude that
m | K. Since n | k and m | k and gcd(n,m) = 1, we conclude that nm | k. Since k | nm and nm | k, we
conclude that k = nm.

(vi) Let (D, %) be a group. Assume a * b = b * a for some a,b € D. Given |a| = 6 and |b| = 14. Prove that (D, ) has a
cyclic subgroup of order 42. [hint: Some how show that D has an element of order 7, then you need to use (V)]
Proof. We know |b?| = 14/gcd(2, 14) = 7. Since a x b = b * a, it is clear that a * b*> = b* * a. Since ged(6,7) =1,
by part V |a * b*| = 42. Hence H =< a * b* > is a cyclic subgroup of D with 42 elements.

(vii) Let D be an abelian group with pq elements where p, ¢ are distinct prime numbers. Prove that D is cyclic.
Proof. Since D is abelian, we have a subgroup H of order p and a subgroup K of order ¢. Let a € H such

that ¢ # e. By Lagrange Theorem we conclude |a| = p. Similarly, if b € K and b # e, then |b| = ¢. Thus
|a * b] = pg by part V. Hence D =< a x b >

(viii) Let D be a finite abelian group and H be a proper subgroup of D with 10 elements. Assume a € D \ H such that
|a| = 3. Then

a. Show that a x H, a* «+ H,a® « H are distinct left cosets of H[ Hint: First note that ® « H = ex H = H. We
knowax HNH = 0. Soshow o>« HNax H = and a* x HN H = 0].
Proof: We show a”> ¢ H and o’ ¢ a x H. Assume that o> € H. Since a®> = e,axa’> = e. Thuse € a * H,
impossible since o + H N H = (. Assume a*> € a * H. Thus a> = a * h for some , ¢ H. Hence a = h,
impossible. Thus H, a * H,a” x H are all distinct left cosets of H.

b. Show that F = a x H U a® * H U a® + H is a subgroup of D with 30 elements.

Proof: Note that H = o+ H = ex Hand hence F = o x HUax HUa? x H. Let z, y € F. Since F is finite,
we only need show = x 3y € . Hence x = a’ x h,yy = a* x g for some i, k,0 < i,k < 2 and some h,g € H.
Since lal = 3 and D is abelian, z + y = (a’ * h) * (a* * g) = al"+F)m08 4 (B« ¢). Since 0 < (i + k)mod3 < 2
and h x g € H, we are done.



2 Ayman Badawi

a. Find all distinct left cosets of H. Note there must be exactly 4 such left cosets
: This is my present to you... just straight forward calculations

b. Is H U5H asubgroup of U(16)? Is H U9H a subgroup of U(16)? explain
Note K = HUS5H ={1,7,3,5}. 63 =15¢ K,sono)and L = H U9H = {1,7,9,15} (by Caley’s Table
L is a subgroup)

Submit your solution on Tuesday October 18, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi®@aus.edu, www.ayman-badawi.com
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HW IV, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Leta = (1452)0(265) € Se. Find ||

(ii)

(iii)

(iv)

)

(vi)

(vii)

(viii)

(ix)

)

(x1)

(xii)

(xiii)

Typical question
Let 3 € S;and z = B0o(2 63 1)o3~!. Find |z|.
Typical question

Let D = (Z4,+) x (Zs,+). Give me a subgroup H of D such that there is no subgroup L; of Z, and there is no
subgroup L, of Zg where H = L X Lj.

Solution: The element (2, 3) in D is of order 2. Hence H = {(0,0), (2,3)} is a subgroup of D but there is no
subgroup L; of Z, and there is no subgroup L, of Zc where H = L; x L.

Let D = (5, 1) x (F,*2) be a cyclic group (you may assume |S| > 1, |F| > 1). Let H be a subgroup of D. Prove
that there exists a subgroup K of S and there exists a subgroup L of F' such that H = K x L. [Hint: You may use
the fact that if gcd(n,m) = 1 and ¢ | nm, theni | nori|mori=ab (a > 1and b > 1) such thata | n and b | m.)
[OBSERVE that the group in part I1I is not cyclic, interesting!]

Solution: We know that F, S are cyclic and finite groups. Let n = |S| and m = |F'|. Hence |D| = nm. Since
D is cyclic, we know gcd(n,m) = 1. Let H be a subgroup of D and & = |H|. Since D is cyclic, we know that
H is the only subgroup of D that has k element. Since & | nm and gcd(n,m) = 1, we conclude that & = ab
such that a | n, b | m, and gcd(a,b) = 1 (note it is possible that « = 1 or b = 1). Since a | n, S has a unique
subgroup L, of order a. Since b | m, F' has a unique subgroup L, of order b. Thus L; x L, is the unique
subgroup of D that has & elements. Hence H = L; x L.

Let a € S, be a permutation (i.e a = (a; - - - ax). Note that not every function in S, is a permutation). Prove that
a € A, if and only if |a| is an odd number.

Solution: Since a = (aj az---ag_1 ax) = (a1 ax)o(a; ax_1)o---o(a; az) , (k-1)-2-cycles, we conclude that
a € A, iff (k-1) is even. Hence £ must be an odd positive integer. Thus |a| = & is odd.

We know that Dy, is a subgroup of Sy and hence L = D4 N Ay is a subgroup of S4. Find L. Is L < A4? EXPLAIN

Solution: Let L = DsN Aq = {(1),(13)(24),(13)(24),(23)(14)}. Now if we view L as a subgroup of A4.
Then [A4 : L] = 3. Thus L has exactly 3 left cosets, say: L, aoL, and boL. Now do the calculation, show:
aoL = Loa and boL = Lob. Thus we conclude that L < A,4.

Let D be a group with 15 elements. Assume H < D such that |H| = 3. Assume there exists a € S\ H such that
|a] # 5. Prove that D is cyclic. [Hint: you may want to consider D/H !!]

Solution: We know D/ H is a group with 5 element. Consider the natural group homomorphism from D onto
D/H (given by x — x x H). Let k = |a|, and m = |a * H| (note that m is the order of the element « « H in
D/H). We know that m | k and m | 5 (since |D/H| = 5). Since « ¢ H, m # 1. Hence m = 5. Thus 5 | k. Since
5| kandk | 15 and a® # 1, we conclude that & = 15. Thud D is cyclic.

Let F' be a nontrivial group-homomorphism from (Zg, +) into (Zg,+). Find Ker(F) and find Image(F) (i.e.
Range(F)).

Solution: We know Z¢/Ker(F) = Image(F) and Image(F) is a subgroup of Zg. Thus |Image(F)| is a factor
of 8. Let a = |Image(F)|, b = |Z¢/Ker(F)|. Hence a = b. Since b | 6 and « = b and a | 8, we conclude that
a = b = 2. Now Zg has exactly one subgroup of order 2. Thus I'mage(F) = {0,4}. Since b = 2, we conclude
|Ker(F)| = 3. Since Zg has exactly one subgroup of order 3, we conclude Ker(F) = {0,2,4}.

Is the group (Z4, +) isomorphic to U(8)? EXPLAIN.

Solution: No, Z, is cyclic but U(8) is not cyclic

Give me an example of a non-abelian group say D such that D has a normal subgroup H where D/H is abelian.
Solution: Let D = S; and H = A;.

Give me an example of an abelian group say D that is not cyclic but D has a normal subgroup H where D/H is
cyclic .

Solution: Let D = U(8) and H = {1,7}.

Give me an example of a group say D that has a normal subgroup H such that there is an a € D where |a| = oo but
the order of the element a x H in G/H is finite.

Solution: Let D = (Z,+), H = 5Z,and a = 1. Then |1| = cc. Since Z/5Z ~ Zs, |1 +5Z| = 5.

Give me an example of a group say D such that for each integer n > 2, there is an element a € D with |a| = n.
(note that such D must be infinite)

Solution: Let D = (Q,+) and H = Z. Then 1 + Z| = nin Q/Z.
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(xiv) Letn > 3 and let z € S,,. Prove that 22 is always an even function.

Solution: Since A4 <1 S4, we know that S, /A, is a group with exactly 2 elements. Let = € S;. Then (zoA4)2 =
220A = Ain Sy/A4. Thus 22 € Ay.
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